Simulation of Heat Conduction in Suspended Graphene Flakes of Variable Shapes

نویسندگان

  • Samia Subrina
  • Dmitri Kotchetkov
چکیده

Graphene is a novel material that reveals many remarkable properties. Academic and industry research groups around the globe are carrying out theoretical and experimental studies to discover and investigate characteristics of graphene. Due to its outstanding properties, graphene has a potential to revolutionize technology. Particularly, graphene was found to be one of the best known heat conductors [Balandin et al., Nano Lett. 8, 902 (2008)], which suggests that it can be used in nanoelectronic and optoelectronic devices as a heat spreader component. The extremely high thermal conductivity was found for single layer graphene, which consisted of one crystalline plane of sp2bound carbon atoms. In that experiment a method of measuring G peak position of the Raman spectrum as a function of both the temperature of the graphene sample and the power of the heat source was used to compute the thermal conductivity. The sample in the experiment had approximately rectangular geometry and a simple model was used to extract the thermal conductivity under certain assumptions about the nature of the thermal transport. In this work we used finite-element simulations to model the heat spreading in graphene flakes of variable shapes. We also investigated how the thermal transport is influenced by the geometry of the heat source and flake width. We found that all mentioned factors impact heat propagation and have to be included in the experimental data extraction. The simulations also proved that for the rectangular geometry of the flake and specific conditions of the experiment, e.g., ratio of the flake width to the laser spot size, the simple one-dimensional model data extraction was adequate. The developed simulation procedure can be further used for investigation of thermal transport in graphene multi-layers and graphene–heat sink structures. The latter is required in order to study the feasibility of application of graphene multi-layers for the lateral hot-spot removal and other device-level thermal management applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat conduction in graphene: experimental study and theoretical interpretation

We review the results of our experimental investigation of heat conduction in suspended graphene and offer a theoretical interpretation of its extremely high thermal conductivity. The direct measurements of thermal conductivity of graphene were performed using a non-contact optical technique and special calibration procedure with bulk graphite. The measured values were in the range of ∼3000–530...

متن کامل

Thermal conductivity of graphene laminate.

We have investigated thermal conductivity of graphene laminate films deposited on polyethylene terephthalate substrates. Two types of graphene laminate were studied, as deposited and compressed, in order to determine the physical parameters affecting the heat conduction the most. The measurements were performed using the optothermal Raman technique and a set of suspended samples with the graphe...

متن کامل

Length Dependent Thermal Conductivity Measurements Yield Phonon Mean Free Path Spectra in Nanostructures

Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method t...

متن کامل

Theoretical Studies of Spin-dependent Electronic Transport in Ferromagnetically Contacted Graphene Flakes

Based on a tight-binding model and a recursive Green's function technique, spin-depentent ballistic transport through tinny graphene sheets (flakes) is studied. The main interest is focussed on: electrical conductivity, giant magnetoresistance (GMR) and shot noise. It is shown that when graphene flakes are sandwiched between two ferromagnetic electrodes, the resulting GMR coefficient may be qui...

متن کامل

Using the Lattice Boltzmann Method for the numerical study of non-fourier conduction with variable thermal conductivity

The lattice Boltzmann method (LBM) was used to analyze two-dimensional (2D) non-Fourier heat conduction with temperature-dependent thermal conductivity. To this end, the evolution of wave-like temperature distributions in a 2D plate was obtained. The temperature distributions along certain parts of the plate, which was subjected to heat generation and constant thermal conductivity condit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008